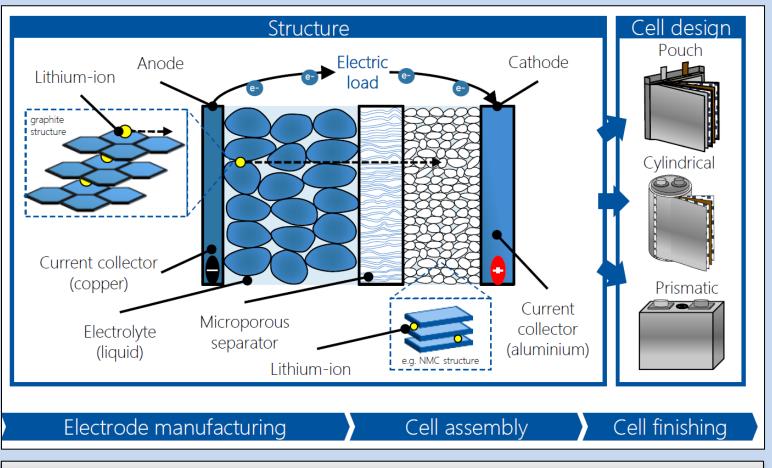


THE EVOLUTION OF BATTERY TECHNOLOGY FOR THE EMERGING GLOBAL ELECTRIC VEHICLE MARKET

APRIL 2022

<u>CONTEXT</u>: THE GROWTH OF THE LIB CELL MANUFACTURING INDUSTRY TO SUPPORT EV MARKET GROWTH PRESENTS EXPANDING OPPORTUNITIES FOR INDUSTRY SUPPLIERS AND TECHNOLOGY DEVELOPERS


AND COVERS A BROAD CROSS SECTION OF CHEMICAL AND ENGINEERING SPECIALTIES

WITH NEW REGIONAL OPPORTUNITIES IN NORTH AMERICA AND EUROPE

Prepared for CCN Ron Turi – Element 3 Battery Venture, LLC April 13, 2022

LITHIUM ION CELL

Battery Process – Step-by-Step Tour: <u>https://www.pem.rwth-aachen.de/global/show_document.asp?id=aaaaaaaabdqbtk</u>

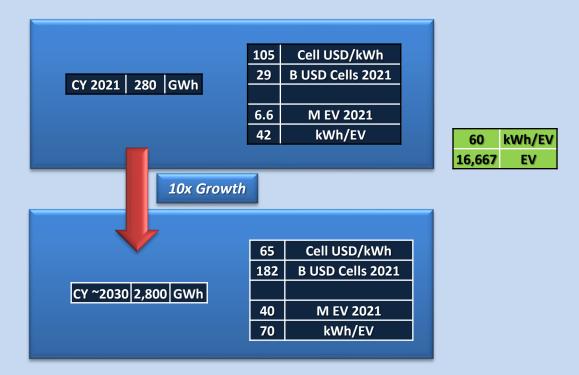
EV APPLICATIONS

3

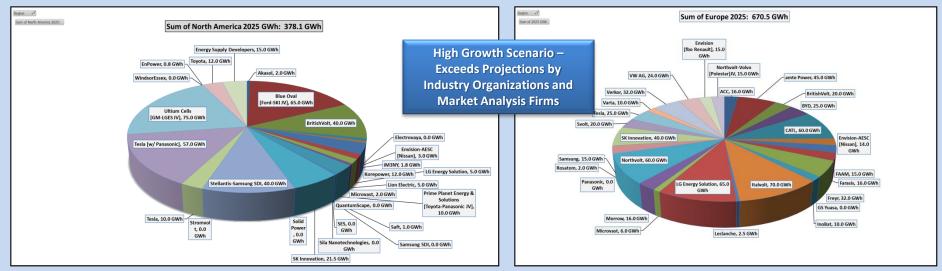
SIMILAR THEME: GM ULTIUM WITH LONG THIN POUCH CELLS FROM LG ENERGY SOLUTIONS, WITH COOLING ELEMENTS

https://www.wardsauto.com/alternative-propulsion/gm-jointventure-prepping-ohio-battery-plant

- VW MEB
- HYUNDAI-KIA E-GMP
- VOLVO-GEELY PS3
- REE AUTO
- More!


PASSENGER EV BATTERY CELL MARKET SIZE

[>90% LIB MANUFACTURING INDUSTRY SIZE]


PASSENGER EV BATTERY CELL MARKET SIZE

[>90% LIB MANUFACTURING INDUSTRY SIZE]

LIB MANUFACTURING INDUSTRY GROWTH – ANNOUNCED CAPACITY INSTALLED BY 2025

	2025 GWh	
Europe	671	35%
North America	378	20%
China	850	45%
	1899	

Industry announcements more than double GWh installed over Market Analysis Projections.

This view skews would shift the sigmoidal curve toward the present. 2025 in this view looks like 2028 in the market projections.

The more easily Addressable Markets in Europe and North America Regions together would be ~10 B of CAPEX for CY 2025.


6

LIB MANUFACTURING INDUSTRY GROWTH – ANNOUNCED CAPACITY INSTALLED BY 2025 ⁷

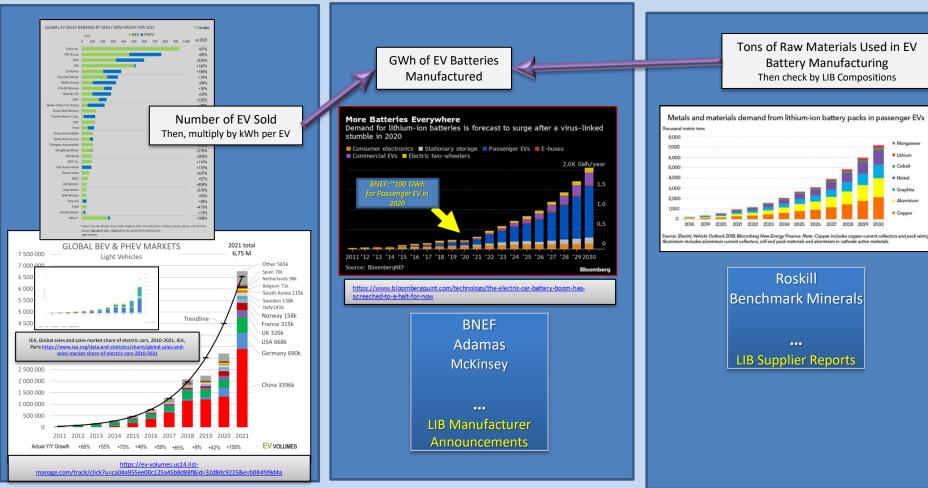
E3BV

https://cicenergigune.com/en/blog/north-america-battle-electric-car-battery-gigafactories

EV LIB CELL MANUFACTURING INDUSTRY GROWTH – DATA SOURCES

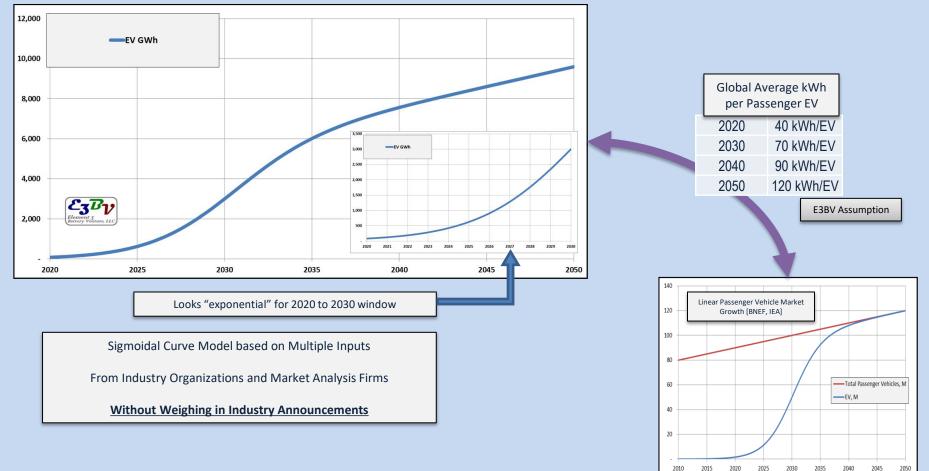
Manganes

Lithium


Cobalt

Nickel

Graphite

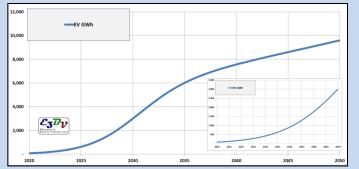

Aluminiu

Copper

LIB MANUFACTURING INDUSTRY GROWTH - E3BV "COMPILATION"

9

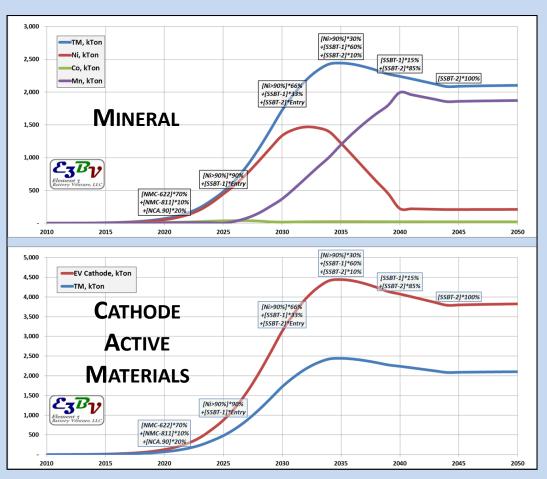
LIB INDUSTRY SUPPLY IN THE FACE OF GROWTH


PROJECTIONS OF MATERIALS TECHNOLOGY ADVANCEMENT -BASED ON IMPLEMENTING CATHODE IMPROVEMENTS $\rightarrow N_i$ -Rich Cathode Metals and materials demand from lithium-ion battery packs in passenger EVs Thousand metric tons 8,000 Manganese 7,000 Lithium 6,000 Cobalt 5,000 4,000 Nicke 3,000 Graphite 2,000 Aluminium 1,000 Copper 2027 2018 2022 2023 2024 2025 2026 2028 2029 2030 2019 2020 2021 Source: Electric Vehicle Outlook 2018, Bloomberg New Energy Finance. Note: Copper includes copper current collectors and pack wiring.

Aluminium includes aluminium current collectors, cell and pack materials and aluminium in cathode active materials.

https://recvclinginternational.com/technology/snt-powering-up-dead-car-batteries-is-not-a-problem/16197/

LIB MANUFACTURING INDUSTRY GROWTH - EFFECT ON SUPPLY



Sigmoidal Curve Model with Mineral and CAM Demand

These change shape, since the Cathode Chemistry Changes!

Potential for -

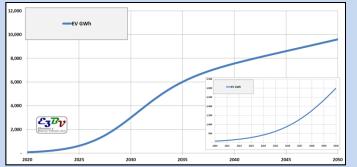
- Ni bottleneck 5 to 8 years mineral development time frame
- Adoption of Lithium Iron Phosphate [LFP]

LFP VERSUS METAL OXIDE CATHODES IN LITHIUM ION CELLS

	-
 L.	J

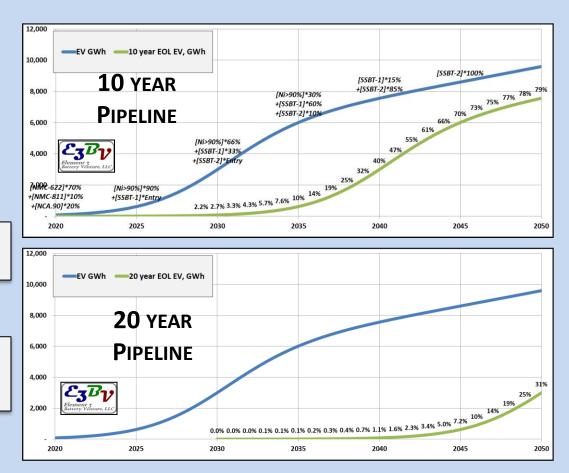
Property	LITHIUM IRON PHOSPHATE [LFP]	LITHIUM ION NI-RICH CATHODE, GRAPHITE	LFP with Silicon Anode or SSBT	LITHIUM ION NI-RICH CATHODE WITH SILICON ANODE OR SSBT	High Voltage Phosphate SSBT	High Voltage Metal Oxide SSBT
Energy Density Wh/L	300 WH/L [MATURE]	500 WH/L [GOING TOWARD 650]	~500 Wн/L [Mature]	~1,000 WH/L [EV OEM MOTIVATION]	~1,000 WH/L	~2,000 Wн/L
Safety: Cathode Autothermal temperature, °C	290°C [ANODE INITIATES 150°C]	170 TO 190°C [ANODE INITIATES 150°C]	290°C [Silicon initiates 150°C, SSBT does not]	170 to 190°C [Silicon initiates 150°C, SSBT does not]	170 то 190°С	220°C
Cell Level Cost	85.USD/кWн	~125.USD/кWн 2020 ~100.USD/кWн 2025	Si: 60.USD/кWн SSBT: 45.USD/кWн	SI: 85.USD/кWн SSBT: 75.USD/кWн	45.USD/кWн	60.USD/кWн
BATTERY LEVEL COST [NOTIONAL]	100.USD/кW н	~150.USD/кWн 2020 ~120.USD/кWн 2025	SI: 75.USD/кWн SSBT: 60.USD/кWн	SI: 100.USD/кWн SSBT: 90.USD/кWн	55.USD/кWн	70.USD/кWн
Charge Voltage, Cell	3.65V GOOD FOR SAFETY FOR LIQUID ELECTROLYTE BAD FOR MANUFACTURING COST – MORE CELLS IN SERIES	4.2V LIMITED BY ELECTROLYTE STABILITY AND CATHODE COLLAPSE	3.65V CATHODE IS ALREADY EMPTIED	SI: 4.2V SSBT: 4.35V LIMITED BY CATHODE COLLAPSE	5V	5V
BATTERY LIFE [<i>Notional</i>]	Long ~3,000 cycles Low annual TCO	~2,000 CYCLES	SI: ~1,000 CYCLES SSBT: LONG ~5,000 CYCLES	SI: ~1,000 CYCLES SSBT: LONG ~5,000 CYCLES	SSBT: LONG ~5,000 CYCLES	SSBT: LONG ~5,000 CYCLES

LITHIUM, LITHIUM EVERYWHERE?


- **1. LITHIUM IS NOT RARE**
- 2. LOWEST DENSITY METAL, SOLID
- 3. 3,861.mAH/g Highest Capacity Metal
- 4. -3.04 V FIFTH HIGHEST STANDARD ELECTRODE POTENTIAL OF ANY ELEMENT

https://www.periodni.com/pictures/relative_abundance_of_chemical_elements.jpg

LIB MANUFACTURING INDUSTRY GROWTH – EOL EV BATTERY / RECYCLING?



Sigmoidal Curve Model with End of Life [EOL] EV Batteries

Long pipeline!

Potential for –

- EV Battery Remanufacturing
- Second Use as Grid ESS Batteries Auto OEMs \rightarrow Utilities
- Last resort, reclaim metals

15

COMPETITION FOR EOL EV BATTERY SUPPLY

1. REMANUFACTURING [DIRECT RECYCLING]

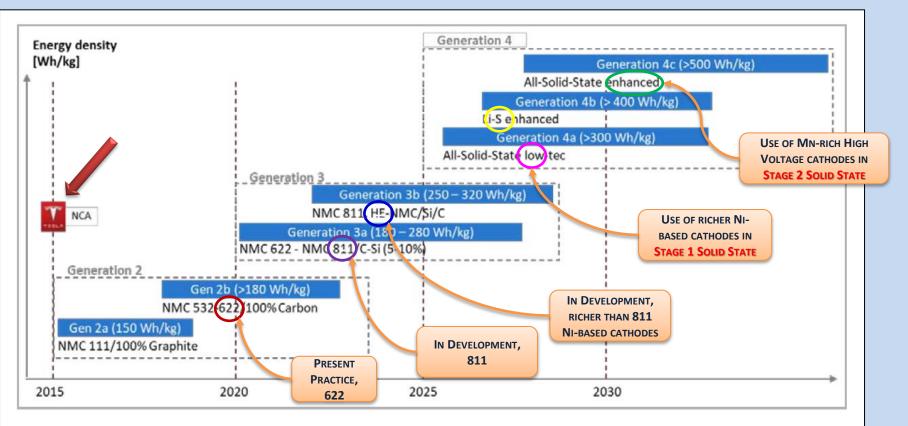
Spiers, Cardone, Dorman

2. SECOND USE

- GRID ENERGY STORAGE UTILITY AND BEHIND THE METER, CAPACITY FIRMING OF RENEWABLES, GRID STABILITY – NUMEROUS BATTERY ASSEMBLERS!
- FORKLIFTS, MATERIALS HANDLING, FLOOR CLEANERS, ROBOTICS
- COMMERCIAL BACKUP POWER TELECOMMUNICATIONS NETWORKS, DATA CENTERS, HOTELS, BUSINESS CENTERS

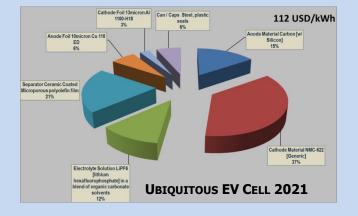
3. Emerging Hydrometallurgical Recycling

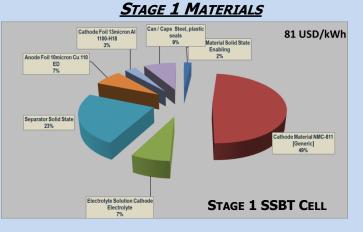
- A. CELL REPAIR
- B. ELECTRODE RECOVERY
- C. ACTIVE CATHODE MATERIAL RECOVERY
- D. METAL SALTS PRECURSORS TO MAKE CATHODE MATERIALS

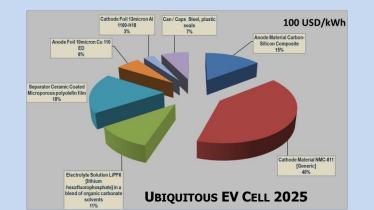

4. PYROMETALLURGICAL RECYCLING

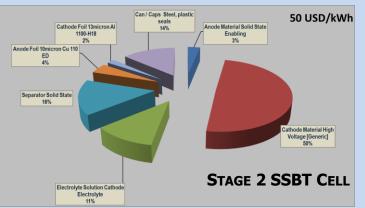
- SMELTING TO RECOVER METALS USING HIGH TEMPERATURE ROTARY KILNS – EXISTING INDUSTRY
- ADAPTATION OF EXISTING LEAD SMELTING
 - LEAD ACID BATTERY MANUFACTURERS
 - INDEPENDENT LEAD ACID BATTERY RECYCLERS
- ADAPTATION OF EXISTING MINERAL PROCESSING INDUSTRY

COMPETITION AMONG EV BATTERY MAKERS – EV OEMs DRIVES TECHNOLOGY






Sharova, Varvara et al. (2020), *Evaluation of Lithium-Ion Battery Cell Value Chain*, Working Paper **Forschungsförderung**, (168) Hans-Böckler-Stiftung, Düsseldorf <u>https://www.econstor.eu/bitstream/10419/217243/1/hbs-fofoe-wp-168-2020.pdf</u>


How does Solid State Battery Technology Reduce Materials Cost?

HOW MUCH LI PER KWH?

EFFECT OF CAM

				Theoretical	Actual		Material Cost	Material Cost		
	Ni %mass									
	in					Utilization				
	Cathode			mAh/g	mAh/g	%	USD/kg	USD/kWh	Ni g/kWh/Ute	Li g/kWh/Ute
LNO	60.1%	JMAT [abandoned]	2021	274	220	80%	14.3	17.5	739	87.3
NCA-90.05.05	55.0%	Sumitomo	2019	279	205	73%	14.7	19.4	806	95.2
NCA-85.10.05	51.9%	Sumitomo	2017	279	195	70%	15.3	21.2	847	100.1
NMC-811	48.3%	SKI-Cosmo	2018	275	185	67%	14.7	21.5	882	104.2
NMC-622	36.3%	Ecopro	2018	277	170	61%	15.2	24.2	963	113.8
NMC-532	30.4%	Umicore	2017	278	160	58%	14.5	24.5	1,027	121.4
NMC-111	20.3%	Umicore	2017	278	150	54%	15.9	28.6	1,097	129.7
LCO	0.0%	Umicore	2010	274	140	51%	26.3	50.8	1,158	136.9

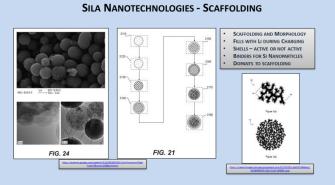
COMPETITION AMONG EV BATTERY MAKERS – EV OEMS DRIVES TECHNOLOGY

THE ENGINEERING CHALLENGE OF SILICON ANODE

> Graphite Anode 70 to 80 micron 3.5 mAh/cm2 @330.mAh/g

EV Grade Cathode ~150 micron 3.5 mAh/cm2 @190.mAh/g

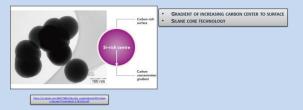
> Silicon Anode 15 to 20 micron 3.5 mAh/cm2 @3600.mAh/g



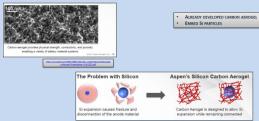
MAJOR DEVELOPERS OF SILICON ANODE MATERIALS

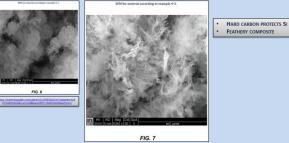
COMPANY	TECHNOLOGY	ASSOCIATION	CELL LEVEL ENERGY DENSITY , WH/L	CYCLES TO 80% CAPACITY
SILA NANOECHNOLOGIES	SCAFFOLDING TO HOLD SI NANOPARTICLES	BMW [2023], DAIMLER, SAMSUNG, ATL	450	500
ENOVIX	SILICON PIECES SHAPED INTO 3D	2021	900	700
GROUP14	SI-HARD CARBON COMPOSITE	REC [ENERG2 SPIN-OUT] SCC55 120 TON/YR WA ATL, BASF, AND SK INNOVATION	900	2000
FERROGLOBE	SILICON MINERAL PROCESSOR	BIOSOLAR - NORTH CAROLINA A&T STATE UNIVERSITY		
Ενονικ	SI CORE FROM REDUCED SILANE GAS WITH TRANSITION TO GRAPHITE SHELL	SIRIDION BLACK PARTICLES		
NANOGRAF*	HOLEY GRAPHENE WRAPPED SI NANOPARTICLES	JNC		
FARAD POWER*	SI COMPOSITE WITH RENEWABLE CARBON PRECURSOR - FURFURAL ALCOHOL			
ASPEN AEROGEL	AEROGEL OF SIO2, AEROGEL OF CARBON	EVONIK, SK INNOVATION		
ENEVATE	NUMEROUS APPROACHES			
NEXEON	COMPLETE CELLS - SIOX?	WACKER, NSP-2		
ADVANO				
ELKEM BATTERY MATERIALS	SILIANE CORE TECHNOLOGY [PV]	VIANODE SUBSIDIARY		
SICONA				
SHIN-ETSU	SILIANE CORE TECHNOLOGY			
AMPRIUS	VAPOR DEPOSITION GROWN SI NANOFIBRILS	STANFORD, BAIC [BIEJING ELECTRIC], AIRBUS	[450]	[250]
3M	TRANSITION METAL DOPED SI	IN USE AS ADDITIVE - BOOSTER		
ONED				
PARACLETE				
TESLA	BATTERY DAY 2020, THICK SEI LAYER, IONOMER	DALHOUSIE U - JEFF DAHN?		
BYD	ANNOUNCEMENT OF SILICON-LFP CELSS	FOR BLADE BATTERY		

GROWTH OF EV BATTERY MANUFACTURING PLANTS


SHAPING SILICON PIECES IN 3D FIG. 15

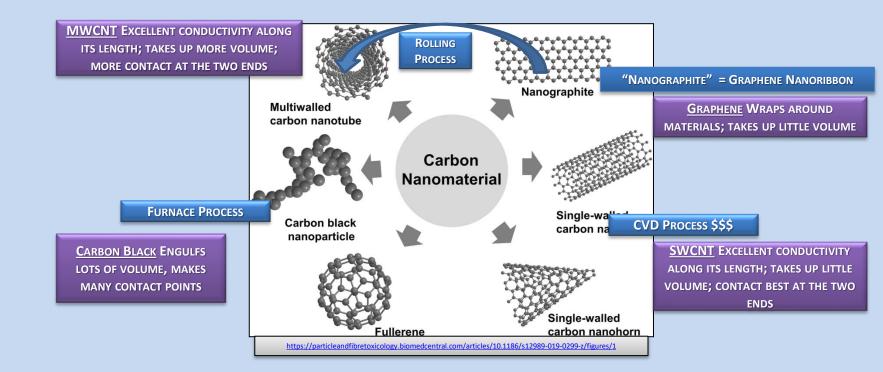
DIRECTING SI EXPANSION SPACERS IN THE 3D STRUCTURES SEPARATORS FOR 3D STRUCTURES CELL CONSTRAINTS


TESLA BATTERY DAY 2020 - SILICON PARTICLES WITH SSE POLYMER


EVONIK SIRIDION BLACK - SI CORE WITH CARBON SURFACE

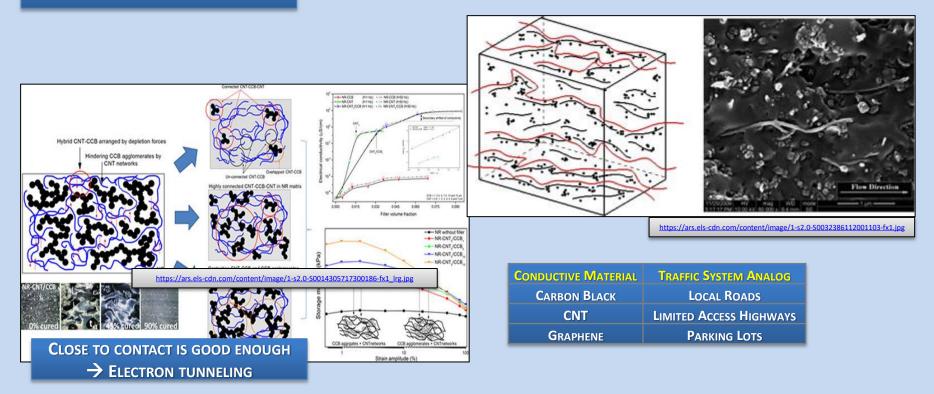
ASPEN AEROGEL - SILICON PARTICLES IN CARBON AEROGEL

GROUP14 – HARD CARBON COMPOSITES



ENOVIX – 3D SILICON STRUCTURES "ENGRAVED PILLARS"

BRIEF OVERVIEW – WHAT IS A CNT?


PERFORMANCE IS ALL ABOUT SHAPE

CNT EXAMPLE USES IN ELECTRODES CONNECTED NETWORK - STRUCTURE

CNT AND CARBON BLACK NETWORKS

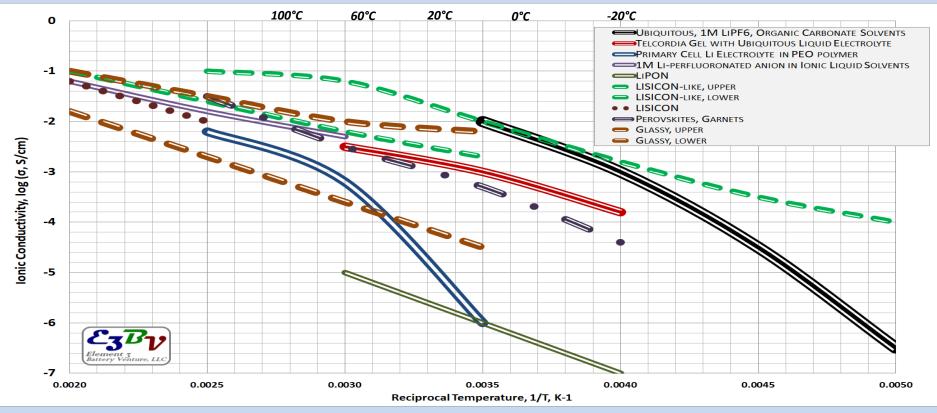
Solid State Materials \rightarrow SSBT cells

https://www.theverge.com/2020/12/8/22158573/quant umscape-solid-state-battery-ev-range-charge-vw

SOLID STATE BATTERY DEVELOPERS

THERE ARE A FEW COMPANIES THAT *APPEAR* READY TO BEGIN PRODUCTION SCALE UP AND TARGET INITIAL COMMERCIAL SALES OF SOLID STATE EV CELLS BY 2025 TO AUTO OEM PARTNERS - QUANTUMSCAPE [CERAMIC, GARNET], SOLID POWER AND TOYOTA [SULFIDE GLASS] AND IONIC MATERIALS [POLYMER].

Company	SSBT TYPE
Ilika	CERAMIC
Ion Storage Systems	CERAMIC
ProLogium	CERAMIC
Corning	GARNET CERAMIC
кііт	GARNET CERAMIC
NGK	GARNET CERAMIC
QUANTUMSCAPE	GARNET CERAMIC
PATHION	GLASSY
PolyPlus / Ohara	GLASSY LAYER
SION POWER	GLASSY LAYER
Saft	Hydride
BOULDER IONICS	Ionic Liquid
IO-LI-TEC	Ionic Liquid
Сумет	LIPON
Dyson [SAKTI3]	LIPON
FRONT EDGE TECHNOLOGY	LIPON
INFINITE POWER SOLUTIONS	LIPON
Ambri	Molten Electrodes
SLAC	Perfluoroglyme


Сомрану	SSBT TYPE
Bollere	Polymer
BRIGHTVOLT [SOLICORE]	Polymer
Ionic Materials	Polymer
Seeo	Polymer
Solid Energy	POLYMER
24M TECHNOLOGIES	Semi-Solid
Arlanxeo	SULFIDE GLASS
Idemitsu Kosan	SULFIDE GLASS
Μιτςυι Κινζοκυ	SULFIDE GLASS
Samsung [Young-Gun Lee]	SULFIDE GLASS
SIDUS ENERGY [IBM, M-B, CENTRAL GLASS (JP)]	SULFIDE GLASS
Solid Power	SULFIDE GLASS
Τογοτα	SULFIDE GLASS
BYD	UNK
Fisker	UNK
ГилСнем	UNK
HITACHI ZOSEN CORPORATION	UNK
Jiawei Long Power	UNK
Johnson Battery Technologies	UNK
Lionano	UNK
PIERSICA	UNK
QING TAO ENERGY DEVELOPMENT	UNK
Soelect Inc	UNK
Soundon New Energy Tech	UNK
TERAWATT [SF MOTORS]	UNK

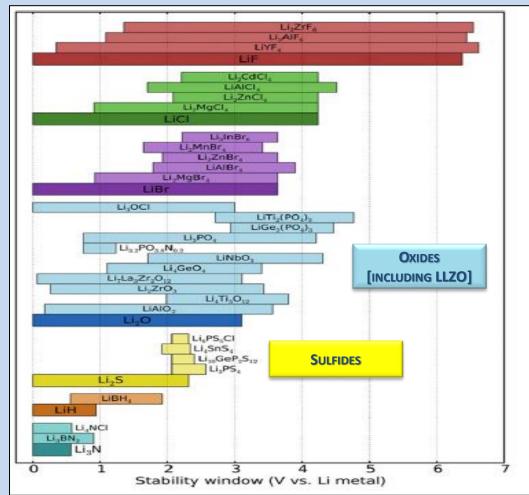
IN ADDITION, OTHERS STAKEHOLDERS HAVE IP FOR SSB TECHNOLOGIES – BATTERY MANUFACTURERS: LGES, MURATA, GS-YUASA, LEP, PANASONIC, ... EV OEMS: HYUNDAI-KIA, NISSAN, GM, DAIMLER, ... CHEMICAL COMPANIES: SHIN-ETSU, POSTECH, SUMITOMO, MITSUI, BASF, ...

SOLID STATE MATERIALS – HOW CONDUCTIVE BY TYPE

29

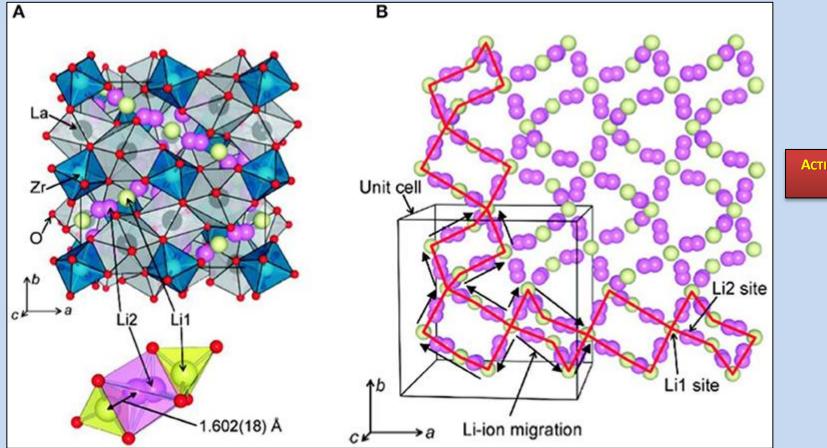
https://www.accessengineeringlibrary.com/content/book/9781260115925/toc-chapter/22/section/section24

[Author content, Ron Turi: 22C.0. SECTION C: SOLID-STATE ELECTROLYTES (CERAMIC, GLASS, POLYMER), in Linden's Handbook of Batteries, Fifth Edition, Kirby W. Beard [Ed.] ISBN: 9781260115925 2019 McGraw-Hill Education



CAN WE PREDICT THE SSBT WINNER? NO.

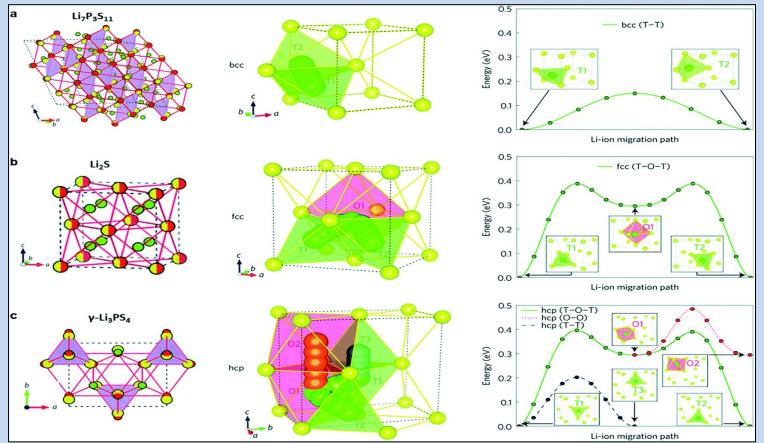
	Ionic Conductivity and Temperature Range	Electrochemical Stability Window	Anode Dendrite Management Material Strength, Defects, Flexibility / Non-Fragile	Anode Plating Control	Availability of Precursor Materials, Processing Separator, Cathode-SSE composite	Ease of Scale Up in footprint, stacking, connectors
CERAMIC	MEDIUM	Нідн	High / Low	???	Low	Low
SULFIDE	Нідн	Low	Low	???	MEDIUM	MEDIUM
Polymer	Low	Medium	Low	???	Нідн	Нібн


SOLID STATE MATERIALS – ELECTROCHEMICAL STABILITY WINDOW [ESW] BY TYPE

https://www.cell.com/chem/pdf/S2451-9294(18)30530-8.pdf Xia, Shuixin, et al. "Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries." *Chem*, vol. 5, no. 4, Apr. 2019, pp. 753–85. *DOI.org* (*Crossref*), doi:10.1016/j.chempr.2018.11.013. 31

SOLID STATE MATERIALS – GENERIC LLZO GARNET

https://www.frontiersin.org/files/Articles/548294/fchem-08-00468-HTML/image_m/fchem-08-00468-g001.jpg


Kim, Abin, et al. "Research Progresses of Garnet-Type Solid Electrolytes for Developing All-Solid-State Li Batteries." Frontiers in Chemistry, vol. 8, Frontiers, 2020. Frontiers, doi:10.3389/fchem.2020.00468.

32

Activation Energy ~0.3 eV

SOLID STATE MATERIALS – SULFIDE GLASS

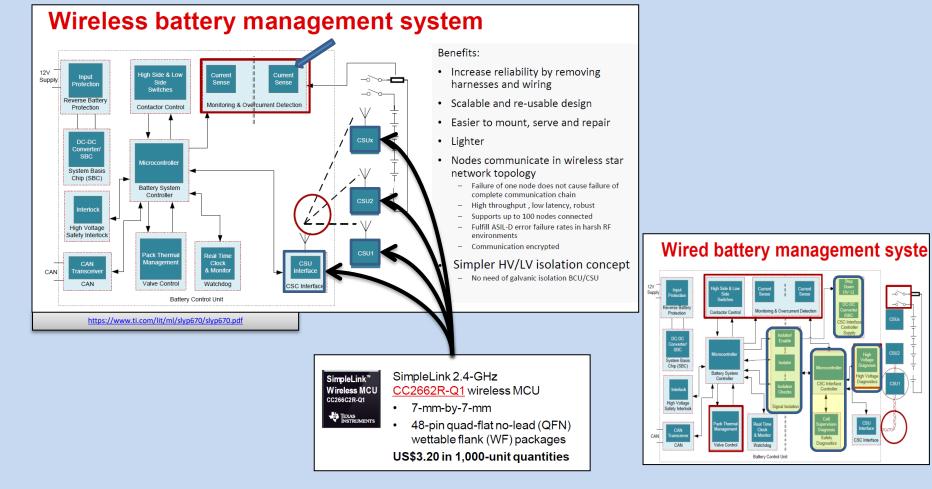
https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta04555d

Lian, Peng-Jie, et al. "Inorganic Sulfide Solid Electrolytes for All-Solid-State Lithium Secondary Batteries." *Journal of Materials Chemistry A*, vol. 7, no. 36, The Royal Society of Chemistry, Sept. 2019, pp. 20540–57. *pubs.rsc.org*, doi:<u>10.1039/C9TA04555D</u>.

CAN WE PREDICT THE SSBT WINNER? NO.

MOST PROBABLE: THERE WILL BE MORE THAN ONE WINNER -

TOO MANY FACTORS ARE UNDETERMINED AND COMMERCIALIZATION RELIES ON SUCCESS FOR MULTIPLE FACTORS


- ➢ COMMERCIAL SCALE UP
 - \circ Consistency / Uniformity in large batches "Campaigns"
 - TRUE ASSESSMENT OF TRL [TECHNOLOGY READINESS LEVEL] REQUIRES "OPEN KIMONO"
 - SUPPLY CHAIN DEVELOPMENT CERAMICS, GLASSES, POLYMERS
- > LONG LASTING SOLID STATE DESIGN PERFORMANCE AT EOL [END OF LIFE] VERSUS OEM WARRANTY
 - PROTECTION AGAINST LITHIUM DENDRITE GROWTH
 - $\,\circ\,$ Loss of lithium stability of cathode materials esp., unproven novel HV cathodes
 - $\,\circ\,$ Loss of rate capability for fast charging several failure modes / root causes
 - MECHANICAL ENDURANCE
- > LITHIUM ION EV BATTERIES THE EMPIRE STRIKES BACK [SORT OF]
 - IMPROVED ELECTROLYTE SOLVENTS "MILLION MILE" BATTERY TECHNOLOGY AND SLAC LIQUID FOR LI METAL PLATING
 - SILICON ANODE PRICE POINT UNKNOWN, BUT ENABLES HIGHER ENERGY DENSITY, CLOSER TO AS STAGE 1 SSBT [PRE-LITHIATION]
 - DESIGNS FOR LOWER COST MANUFACTURING LEVEL THE PLAYING FIELD WRT SSBT SIMPLICITY E.G., TESLA TABLESS 4680 CYLINDRICAL, LG ENERGY SOLUTIONS 110CM LONG, WIDE TAB POUCH CELL FOR GM ULTIUM BATTERY
- > MATERIALS DESIGN AND ENGINEERING OF COURSE!

BATTERY TECHNOLOGY LEVEL INNOVATIONS

WIRED \rightarrow WIRELESS BMS ELECTRONICS

CELL ASSEMBLY INNOVATION

TABBED CYLINDRICAL - 4680

Fewer cells in a pack Better heat transfer enables larger cell without overheating in supercharger Manufacturing Throughput ??? In kWh/hour; fewer stop-and-start's Optimized cell size ~ 46 mm diameter x 80 mm length provides 3.3X more volume, but 5X the energy [efficiency?] Cutting the uncoated edges of the copper current collector into "shingles" => **MANUFACTURING ENGINEERING FEAT!**

HTTPS://TESLA-SHARE.THRON.COM/CONTENT/?ID=96EA71CF-8FDA-4648-A62C-753AF436C3B6&PKEY=S1DBEI4

MULTI-DISCIPLINARY

Electrochemistry	Ionic Transport
Electronics / Modeling	Thermal Analysis
Physical Chemistry / Materials Science	Organic Chemistry

https://www.batterybrunch.org/battery-report https://medium.com/batterybits/the-battery-report-2021-442ed2a06324

Materials Project https://materialsproject.org/

BatPaK https://www.anl.gov/partnerships/batpac-battery-manufacturing-cost-estimation

NAATBATT https://naatbatt.org/

TRENDS

The EV Battery industry and market is very dynamic.

- Trends include legacy auto OEMs scrabbling to transfer manufacturing and operational assets from ICE to EV before 2035 and in most cases, before 2030.
- The supply chain for EV Batteries is tight from Li and Ni mineral to EV grade cells. Auto OEMs must work with as many EV cell manufacturers as possible if there is a chance to fulfill reservations for 100k's of EV model orders VW AG, Ford, GM, Tesla,
- Meanwhile, auto OEMs seek to control the EV Battery supply chain manufacturing EV cells in-house and securing offtake agreements for minerals and other key cell components. Cell makers - esp., LGES and CATL - are also moving to secure materials and contracts with auto OEMs to prevent being cut out of the supply chain!
- And there is a rush to build new LIB gigafactories accelerated by the trend for regionalizing the EV ecosystem and EV Battery manufacturing, with local supply chain development in Europe and North America.
- OK, add to this the unprecedented willingness of auto OEMs to disrupt existing processes even switching battery design and chemistries to gain competitive advantages and every passing month looks different.
- Of course, all legacy auto OEMs have sever cases of Tesla-Envy and there are many EV Battery examples as well as EV manufacturing and skateboard / EV drive system examples of this as copy-cat behavior esp., by VW AG.

So, trends aplenty!

Thank You!

Ron Turi ronturi@e3bv.com +1 267.603.3286